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Abstract. In many systems in condensed matter physics and quantum field theory, first order phase tran-
sitions are initiated by the nucleation of bubbles of the stable phase. In homogeneous nucleation theory
the nucleation rate Γ can be written in the form of the Arrhenius law: Γ = Ae−Hc . Here Hc is the energy
of the critical bubble, and the prefactor A can be expressed in terms of the determinant of the operator
of fluctuations near the critical bubble state. In general it is not possible to find explicit expressions for A
and Hc. If the difference η between the energies of the stable and metastable vacua is small, the constant
A can be determined within the leading approximation in η, which is an extension of the “thin wall ap-
proximation”. We have done this calculation for the case of a model with a real-valued order parameter in
two dimensions.

1 Introduction

The problem of the decay of the metastable false vacuum
at first order phase transitions has attracted considerable
interest due to its numerous relations with condensed mat-
ter physics [1], quantum fields [2], cosmology [3], and black
hole theory [4]. In Langer’s theory of homogeneous nu-
cleation [5,6], the false vacuum decay is associated with
the spontaneous nucleation of a critical bubble of a sta-
ble phase in a metastable surrounding. In the context of
quantum field theory, the nucleation theory was developed
by Voloshin et al. [7], and Callan and Coleman [8,9]. The
quantity of main interest is the nucleation rate I per time
and volume.

The nucleation rate

I =
κ

2π
Γ (1)

is a product of the static part Γ and the so-called ki-
netic prefactor κ, which depends on the detailed non-
equilibrium dynamics of the model; see [6,1]. Most im-
portant is the static nucleation rate Γ , which is equal
to twice the imaginary part of the free energy density of
the metastable phase. In this article we study the static
part Γ .

In the homogeneous nucleation theory it has the form
of the Arrhenius law:

Γ = A exp(−Hc), (2)
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where Hc is the energy of the critical bubble. The prefac-
tor A is determined by fluctuations near the critical bub-
ble state and can be expressed in terms of the functional
determinant of the fluctuation operator [5,9].

In the general case, it is not possible to find the explicit
critical bubble solution of the field equations analytically.
However, the problem becomes asymptotically solvable, if
the decaying metastable state is close enough in energy
to the stable one, i.e. if the energy density difference η
between the metastable and stable vacua is small. The
leading approximation in this small parameter is usually
called the “thin wall approximation” [10], since at η → 0
the critical bubble radius goes to infinity and becomes
much larger than the thickness of the bubble wall.

In the thin wall approximation, the critical bubble en-
ergy Hc can be easily obtained from Langer’s nucleation
theory. It turns out to be much more difficult to find ex-
plicitly the prefactor A in (2). This problem, which is im-
portant for applications of nucleation theory, has been ex-
tensively studied in different models.

A remarkable result on this subject was obtained by
Voloshin [11]. He considered scalar field theory in two di-
mensions with a potential U(φ) of the type shown in Fig. 1.

Voloshin claimed that in the limit η → 0 the nucleation
rate Γ in such a model can be described by the simple
universal formula

Γ =
η

2π
exp

(
−πσ2

η

)
. (3)

Here σ is the surface tension of the wall between the stable
and metastable vacua in the limit η → 0. Thus, accord-
ing to [11], in this limit the nucleation rate Γ is deter-
mined by two well defined macroscopic parameters η and
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Fig. 1. The potential U with the false (φ+) and true (φ−)
vacuum

σ. Another claim of [11] is that there are no corrections to
(3) proportional to powers of the dimensionless parameter
η/σ2. Voloshin arrived at these conclusions by an analysis
performed in the thin wall approximation. He replaced the
original scalar field theory by an effective geometrical one,
which describes only fluctuations of the critical bubble
shape. This approach implies that all other fluctuations
of the original scalar field could be properly accounted
for by the correct choice of the macroscopic parameters η
and σ.

Recently an analytical method was developed [12],
which allows one to study nucleation in the scalar field
model beyond the thin wall approximation. In [12] this
method was used to calculate the nucleation rate for the
first order phase transition in the three-dimensional
Ginzburg–Landau model. In the present paper we apply
the same approach to the two-dimensional case. We cal-
culate the nucleation rate beyond the thin wall approxi-
mation and verify directly Voloshin’s claim (3).

Nucleation theory in two-dimensional scalar field the-
ory has also been studied by Kiselev and Selivanov [13],
Strumia and Tetradis [14], and other authors. In these
articles, however, different renormalization schemes have
been used and Γ has not been expressed in terms of macro-
scopic parameters η and σ. This makes it difficult to com-
pare their results with the ones discussed in this article.

In the articles [15,16] the nucleation rate was calcu-
lated in the two-dimensional Ising model in a small mag-
netic field for arbitrary anisotropies. If Voloshin’s result
(3) is universal, it should be applicable as well to the Ising
model in the critical region. Indeed, the results of [15,16],
rewritten in terms of η and σ, are in a very good agree-
ment with (3). The exponent factors are the same, and the
prefactors differ only by the number π2/9 ≈ 1.0966, which
is very close to unity. This small discrepancy increased our
interest in the subject of the present study.

2 Model and notation

We consider the two-dimensional asymmetric Ginzburg–
Landau model defined by the Hamiltonian

H(φ) =
∫

d2x

[
1
2
(∂µφ(x))2 + U(φ(x))

]
, (4)

where φ(x) is the continuous one-component order param-
eter, and the potential U(φ) depicted in Fig. 1 is given by

U(φ) = Us(φ) +
η0
2v

(φ− v) + U0. (5)

Here Us(φ) denotes the symmetric part of the potential:

Us(φ) =
g

4!
(
φ2 − v2)2 . (6)

The potential U(φ) has a metastable minimum (false vac-
uum) at φ = φ+ and a stable one (true vacuum) at φ =
φ−. The constant term U0 in (5) is chosen to ensure
U(φ+) = 0.

The partition function is given by the functional inte-
gral

Z =
∫
Dφ exp [−H(φ)] . (7)

The temperature has been absorbed into H.
It is convenient to define the mass m and the inverse

coupling parameter β by

m2 =
∂2

∂φ2Us(φ)
∣∣∣∣
φ=v

=
gv2

3
, β =

3m2

g
, (8)

and to introduce dimensionless quantities

x̃µ =
m

2
xµ, η̃ =

g

2m4 η0, ϕ(x̃) =
φ(x)
v

,

ϕ± =
φ±
v
, H̃ =

H
β
. (9)

In dimensionless variables the Hamiltonian and partition
function take the form

H̃(ϕ) =
∫

d2x̃

[
1
2

(∇ϕ)2 + Ũ (ϕ(x̃))
]
, (10)

where

Ũ(ϕ) =
1
2

[(
ϕ2 − 1

)2 − (ϕ2
+ − 1

)2]
+

4
3
η̃ (ϕ− ϕ+) , (11)

and
Z =

∫
Dϕ(x̃) exp

[
−βH̃(ϕ)

]
. (12)

3 The critical bubble solution

The uniform solutions of the field equation

δH̃/δϕ(x̃) = 0 (13)

are the stable ϕ− and false (metastable) ϕ+ vacua given
by

ϕ± = ±1 − η̃

3
∓ η̃2

6
− 4η̃3

27
+O(η̃4). (14)

The critical bubble ϕb(x̃) is the non-uniform radially sym-
metric solution of (13) approaching the false vacuum at
infinity. That is,

−d2ϕb

dr̃2
− 1
r̃

dϕb

dr̃
+ 2ϕb(ϕ2

b − 1) +
4
3
η̃ = 0,

lim
r̃→∞

ϕb(r̃) = ϕ+, (15)
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Fig. 2. Profile of the critical bubble

where r̃ = (x̃µx̃µ)1/2. The profile of the critical bubble
solution is shown schematically in Fig. 2. If η̃ is small, the
thin wall centered at r̃ = R̃ divides regions of false and
stable vacua outside and inside the bubble, respectively.

Equation (15) cannot be solved explicitly. Following
the approach introduced in [12] we shall construct the so-
lution by expansion in powers of η̃. Introducing the new
independent variable ξ:

ξ = r̃ − R̃, (16)

we expand R̃ and ϕb(ξ) as

R̃ =
a−1

η̃
+ a0 + a1η̃ + a2η̃

2 +O(η̃3), (17)

ϕb(ξ) = ϕ0(ξ) + ϕ1(ξ)η̃ + ϕ2(ξ)η̃2 +O(η̃3). (18)

After substitution of (16–18) into (15) one obtains pertur-
batively in η̃

a−1 =
1
2
, a0 = 0, a1 = −2

9
, a2 = 0, (19)

ϕ0(ξ) = tanh ξ, ϕ1(ξ) = −1
3
,

ϕ2(ξ) = − 1
24 cosh2 ξ

×

10ξ − 16ξ cosh(2ξ) − 2ξ cosh(4ξ)

+ 2 ln [2 cosh ξ] [12ξ + 8 sinh(2ξ) + sinh(4ξ)]

− 24

ξ∫
0

dtt tanh t


 .

The bubble energy Ẽ = H̃ [ϕb(x)] can be written as

Ẽ = π

∞∫
−R̃

dξ(R̃+ ξ)
(

dϕb(ξ)
dξ

)2

. (20)

Substitution of (19) into (20) yields

Ẽ =
2π
3

[
1
η̃

+ η̃

(
19
18

− π2

3

)
+O(η̃3)

]
. (21)

It is the basic principle of homogeneous nucleation
theory that the decay of the metastable vacuum occurs
through nucleation of the critical bubble. Callan and Cole-
man expressed the nucleation rate Γ of the metastable
vacuum in terms of functional determinants [8,9]. In our
notation their result takes the form

Γ̃ =
βẼ

2π
1√|λ0|

exp
(
−βẼ + S

)
. (22)

Here Γ̃ = 4Γ/m2 is the dimensionless nucleation rate, and
the entropy S associated with the critical bubble is given
by

expS =
[

det′M
detM (0)

]−1/2

, (23)

where M and M (0) are the fluctuation operators near the
bubble ϕb(x̃) and the metastable uniform vacuum ϕ+, re-
spectively:

M = −∂2 + 6 [ϕb(r̃)]
2 − 2, (24)

M (0) = −∂2 + 6ϕ2
+ − 2. (25)

The operator M has two zero modes proportional to
∂µϕb(x̃), µ = 1, 2, and one negative mode with the eigen-
value

λ0 = −4η̃2. (26)

The notation det′ implies that the three above mentioned
modes are omitted in the corresponding determinant. Af-
ter substitution of (21) and (26), (22) simplifies to

Γ̃ =
β

6η̃2 exp
(

−2πβ
3η̃

+ S

)
(1 +O(η̃)) . (27)

In the subsequent sections we shall calculate the small η̃
expansion for the critical bubble entropy (23) to the order
O(η̃0).

4 The bubble entropy

The spectrum of the fluctuation operator M can be deter-
mined in the form of a perturbative expansion in powers of
the parameter η̃ as in [12]. This is achieved in the following
way.

Introducing the angular momentum quantum number
µ ∈ Z in two dimensions, the radial Schrödinger operators
corresponding to M and M (0) are

Hµ = − d2

dr̃2
− 1
r̃

d
dr̃

+
µ2

r̃2
+ 6 [ϕb(r̃)]

2 − 2, (28)

H(0)
µ = − d2

dr̃2
− 1
r̃

d
dr̃

+
µ2

r̃2
+ 6 ϕ2

+ − 2. (29)

Shifting the coordinate from r̃ to ξ and making use of the
Laurent series (17) for R̃, the eigenvalue problem for Hµ

can be treated perturbatively in η̃. The lowest order leads
to the exactly solvable Pöschl–Teller operator

− d2

dξ2
− 6sech2ξ + 4, (30)
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which has discrete eigenvalues 0 and 3 and a continuum
above 4. In second order one finds a band around 0:

λ0µ = 4η̃2(µ2 − 1) +O(η̃4), (31)

a band around 3:

λ3µ = 3 + 4η̃2(µ2 + const.) +O(η̃4), (32)

and a continuum

λkµ = k2 + 6ϕ2
+ − 2 + 4η̃2µ2 +O(η̃4), (33)

with k ∈ R. This spectrum includes the negative mode
λ00 and the two zero modes λ0,±1.

The sum over µ and the integration over k produce
ultraviolet divergencies in S. We treat these by means
of dimensional regularization in d = 2 − ε dimensions.
As there appear volume integrals in intermediate steps of
the calculation, the extra dimensions are equipped with
a finite extent L and periodic boundary conditions. The
parameter L must cancel out in finite results.

The finite part of the regularized entropy can be conve-
niently evaluated with the help of zeta-function techniques
[17]. The operator-zeta function appropriate for our case
is defined by

ζM (z) =
1

Γ (z)

∫ ∞

0
dttz−1

(
Tr′e−tM − Tre−tM(0)

)
(34)

for Rez > 1 and analytical continuation to other values
of z. The integrand contains the heat kernels exp(−tM)
and exp(−tM (0)). For positive t there is an asymptotic
expansion, the so-called Seeley expansion, which is of the
form

Tr
(
e−tM − e−tM(0)

)
= (4πt)−d/2

∞∑
n=1

tnOn. (35)

Following [17] one obtains

S =
1
2

d
dz
ζM (0) +

O1

8π

[
2
ε

+ ln 4π + Γ ′(1)
]

+O(ε). (36)

This expression displays the divergence as a simple pole in
ε. The derivative of the zeta function is a finite quantity.
The first Seeley coefficient is given by

O1 = −6
∫

ddx̃([ϕb(r̃)]2 − ϕ2
+) = L̃−ε 10π

η̃
+O(η̃), (37)

where
L̃ =

m

2
L. (38)

The zeta function is decomposed into a contribution
from the band near zero and the rest,

ζM (z) = ζ0(z) + ζ1(z), (39)

where

ζ0(z) =
1

Γ (z)

∫ ∞

0
dttz−1

∑
µ�=0,±1

e−tλ0µ . (40)

C

Fig. 3. Integration path C in the complex λ-plane

Correspondingly, the entropy is decomposed as

S = S0 + S1 + L̃−ε 5
4η̃

[
2
ε

+ ln 4π + Γ ′(1)
]

+O(η̃) +O(ε).

(41)
Consider the part

S0 =
1
2

d
dz
ζ0(0). (42)

For a general spectrum of the type

λµ = a(µ+ b)(µ+ c) (43)

the logarithm of the zeta-function regularized determinant
is given by

− d
dz
ζ0(0) = −2 lnΓ (b+ 1) − 2 lnΓ (c+ 1)

− (b+ c) ln a+ ln(bc) + 2 ln(2π), (44)

which can be derived with the help of Riemann’s and Hur-
witz’s zeta functions. Setting a = 4η̃2, b = 0, c = 2 one
finds

S0 = ln
(

8η̃3

π

)
+O(η̃2). (45)

This piece will therefore contribute the factor

eS0 =
8η̃3

π
{1 +O(η̃2)} (46)

to the prefactor A of Γ .
The remaining part S1 of the entropy is calculated with

the help of methods from quantum mechanical scattering
theory. The heat kernels can be represented as

Kt(M) ≡ Tr
(
e−tM − e−tM(0)

)
(47)

= −
∫
C

dλ
2πi

e−λtTr
[
(λ−M)−1 − (λ−M (0))−1

]
,

where the integration path C in the complex plane is
shown in Fig. 3.

Decomposed into the angular momentum sums this
reads

Kt(M) = −
∑

µ

∫
C

dλ
2πi

e−λtA(λ, µ), (48)

with

A(λ, µ) = Tr
[
(λ−Hµ)−1 − (λ−H(0)

µ )−1
]
. (49)
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We obtained an exact representation for A(λ, µ). To de-
scribe it some notations are necessary.

Let fi(r̃, λ), gi(r̃, λ), i = 1, 2 be the solutions of the
linear ordinary differential equation

Hµ ψ(r̃) = λ ψ(r̃) (50)

determined by their asymptotics:

f1(r̃, λ) → Kµ(qr̃),
and f2(r̃, λ) → Iµ(qr̃), at r̃ → ∞, (51)

g1(r̃, λ) → Kµ(q−r̃),
and g2(r̃, λ) → Iµ(q−r̃), at r̃ → 0. (52)

Here Kµ(z) and Iµ(z) are modified Bessel functions, and
the parameters q and q− are defined as

q =
(
6ϕ2

+ − λ− 2
)1/2

, q− =
(
6ϕ2

− − λ− 2
)1/2

. (53)

Since the second order equation (50) has two linearly in-
dependent solutions, there is a linear dependence between
the functions gi(r̃, λ) and fi(r̃, λ):

gi(r̃, λ) =
∑

j=1,2

αij(λ)fj(r̃, λ). (54)

The function A(λ, µ) can be expressed explicitly in terms
of the coefficient α22(λ):

A(λ, µ) =
3µ(ϕ2

+ − ϕ2
−)

(λ+ 2 − 6ϕ2−)(λ+ 2 − 6ϕ2
+)

+
d lnα22(λ)

dλ
.

(55)
This representation for the trace of resolvent opera-

tors is exact. However, (50) cannot be solved in closed
form for arbitrary η̃. So we have to consider the small-η̃
expansion for α22(λ). We have obtained two terms of this
expansion by use of a perturbation theoretical analysis of
the scattering problem (50–54). Omitting the details, the
logarithmic derivative of the matrix element α22(λ) up to
quadratic terms in η̃ takes the form

d lnα22(λ)
dλ

=
1

(4 + p2 − λ)1/2 (56)

×
[

2p2

(λ− 4)2
− 1
λ− 4

+
1

λ− 3 − p2 +
2

λ− p2

]
+O(η̃2).

Here p is the angular momentum parameter defined as
p = 2η̃µ ≈ µ/R̃.

Substitution of (56) and (14) into (55) yields

A(λ, µ) =
1

(4 + p2 − λ)1/2

×
[

2p2

(λ− 4)2
− 1
λ− 4

+
1

λ− 3 − p2 +
2

λ− p2

]

− 2 |p|
(λ− 4)2

+O(η̃2). (57)

This function has simple poles at λ = p2, λ = 3 + p2 and
a square root branching at λ = 4 + p2. It is analytic at
λ = 4.

With the help of this expression we could evaluate the
integral representation for Kt(M) and the related zeta
function. The details of this lengthy analysis will not be
presented here. The µ-summations have been done by
means of Poisson’s summation formula. Separating the
contribution of the band near zero, which has been treated
above, the final result for the remaining entropy is

S1 =
1
2η̃

(
6 +

2π√
3

− 5 ln 2
)
. (58)

This is the central result of this section.

5 Decay rate

In d = 2 − ε dimensions the bubble energy is associated
with an additional factor L−ε and the regularized dimen-
sionless decay rate Γ̃ is given by

Γ̃ =
βL−ε

6η̃2 exp
(

−2πβL−ε

3η̃
+ S

)
(1 +O(η̃)) . (59)

In terms of the dimensionless quartic coupling

u =
g

m4−d
(60)

the parameter β is equal to

β =
3
u
m−ε. (61)

Using the results (41,46), we can write the nucleation rate
as

Γ̃ = (2L̃−ε)
4η̃
πu

× exp

(
− 2π
uη̃

(2L̃)−ε + L̃−ε 5
4η̃

[
2
ε

+ ln 4π + Γ ′(1)
]

+ S1 +O(η̃) +O(ε)

)
. (62)

The entropy contains an UV-divergent term, represented
by a pole in ε. After renormalization of the parameters
of the model according to the usual prescriptions, the di-
vergencies as well as the spurious L-dependence should
disappear in the limit ε → 0.

For the renormalization of the model parameters we
use the same scheme as in [12,17]. A straightforward cal-
culation yields the relation between the bare and renor-
malized dimensionless couplings and masses on the one-
loop level:
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u = uR

{
1 − uR

4π

[
2
ε

+ ln 4π + Γ ′(1) +
3
4

]

+ O(ε) +O(u2
R)

}
. (63)

m2 = m2
R

{
1 +

uR

4π

[
2
ε

+ ln 4π + Γ ′(1) +
7
4

]

+ O(ε) +O(u2
R)

}
. (64)

The asymmetry parameter η0 is renormalized as follows.
On tree level the difference between the minima of the
potential

∆U = U(φ+) − U(φ−) = η0 +O(η3
0) (65)

is equal to η0 for small asymmetries. Let Ueff be the full
effective potential given by

Γ [φ] = −
∫

d2x Ueff(φ) for φ = const., (66)

where Γ [φ] is the generating functional of one-particle irre-
ducible vertex functions. Then we define the renormalized
asymmetry parameter η through

η = ∆Ueff = Ueff(〈φ〉+) − Ueff(〈φ〉−). (67)

It is related to η0 by

η =
η0
v

〈φ〉 +O(η2
0), (68)

where 〈φ〉 is the expectation value of the field at η0 = 0.
From a one-loop calculation we get

η0 = η

{
1 +

uR

8π

[
2
ε

+ ln 4π + Γ ′(1)
]

+O(ε) +O(u2
R)
}
.

(69)
Expressing the unrenormalized parameters in terms of
their renormalized counterparts, the divergencies cancel
indeed and in the limit ε = 0 we obtain

Γ =
η

2π
e−F (70)

with

F = −S1 + 4π
m2

R

u2
Rη

×
{

1 +
uR

4π

(
5
4

− 5 ln 2
)

+O(u2
R)
}

+O(η) (71)

= 4π
m2

R

u2
Rη

×
{

1 − uR

4π

(
19
4

− π√
3

)
+O(u2

R)
}

+O(η). (72)

To make contact with Voloshin’s proposal we have to
express this result in terms of the interface tension σ. To

this end we calculated σ along the lines of [17,18], but now
for d = 2. Leaving out the details here, we obtained

σ =
2mR

uR

{
1 − uR

8π

(
19
4

− π√
3

)
+O(u2

R)
}
. (73)

This implies

F =
πσ2

η

{
1 +O(u2

R)
}

+O(η). (74)

Our final result is therefore

Γ =
η

2π
exp

(
−πσ2

η

{
1 +O(u2

R)
}

+O(η)
)
. (75)

This is in perfect agreement with Voloshin’s result.
Studies of the nucleation rate in the two-dimensional

Ising model have been made with the Monte Carlo method;
see e.g. [19,20,1]. We would like to add a remark on this
case. Let

Z =
∑
{S}

exp


K

∑
〈ij〉

SiSj +H
∑

i

Si


 (76)

be the partition function for the two-dimensional Ising
model on a square lattice with lattice spacing 1. The crit-
ical coupling is

Kc =
1
2

ln(
√

2 + 1). (77)

The quantities appearing in (75) can be related exactly to
K and H in the critical region. The interface tension is
given by [21]

σ = 2K + ln tanhK, (78)

and the asymmetry parameter is

η = 2MH, (79)

where
M =

(
1 − [sinh 2K]−4)1/8

(80)

is the zero field magnetization [22].
The kinetic prefactor κ, mentioned in the introduc-

tion, cannot be calculated with static methods, because
it depends on the non-equilibrium dynamics. For dynam-
ics that can be described by a Fokker–Planck equation, it
is, however, expected to be proportional to the negative
eigenvalue |λ0| and contributes two additional powers of
the magnetic field [6,1].

6 Summary

Our semiclassical calculation of the nucleation rate Γ in
the two-dimensional Landau–Ginzburg φ4-model confirms
Voloshin’s result (3), which was derived in the thin wall
approximation. In particular, we confirm the prefactor
value A = η/(2π) first obtained by Kiselev and Selivanov
[13], and Voloshin [11].
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This value differs from that obtained for the two-
dimensional critical Ising model [15,16] by the numerical
factor π2/9 ≈ 1.0966. We suppose that this small discrep-
ancy is the result of approximations used in [15,16], and
the prefactor value A = η/(2π) is universal. This state-
ment was supported also in the numerical calculations of
A in the critical Ising model by Fonseca and Zamolod-
chikov [23].

The nucleation rate (75) obtained for the model in the
continuum indicates no oscillations in 1/η, in contrast to
the analogous expression (35) of [16] for the Ising model
on a lattice. This supports the assumption on the discrete-
lattice nature of the oscillations in Γ (H) observed in the
Ising model [16].
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